Mathematics - Fourth Grade

Marking Period one	Operations and Algebraic Thinking	Number and Operations in Base Ten	Numbers and Operations Fractions	Measurement and Data	Geometry
CCSS Cluster Statement	Use the four operations with whole numbers to solve problems.	Generalize place value understanding for multidigit whole numbers.	Extend understanding of fraction equivalence and ordering.	Solve problems involving measurement and conversion of measurements from a large unit to a smaller unit.	Draw and identify lines and angles, and classify shapes by properties of their lines and angles.
CCSS Standard	1. Interpret a multiplication equation as a comparison, e.g., interpret 35 $=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.	1. Recognize that in a multidigit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that 700 $\div 70=10$ by applying concepts of place value and division.	1. Explain why a fraction a / b is equivalent to a fraction ($n \times$ a) $/(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	1. Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ..	1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
Learning Target		I understand the magnitude of numbers up to $1,000,000,000$			
Mathematical Practices	6. Attend to precision	8. Look for and express regularity in repeated reasoning	8. look for and express regularity in repeated reasoning.	6. attend to precision	6. attend to precision
MP Learning Targets					
CCSS Standard	2. Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol	2. Read and write multi-digit whole numbers using baseten numerals, number names, and expanded form. Compare two multi-digit numbers		2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money,	2. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of

	for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. 1	based on meanings of the digits in each place, using >, $=$, and < symbols to record the results of comparisons.		including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.	a specified size. Recognize right triangles as a category, and identify right triangles.
Learning Target		I can recognize the place values of numbers and the relationship of each place value to the place to its right, e.g., 1,000 is 10 hundreds			
Mathematical Practices	4. Model with mathematics	1. Make sense of problems and persevere in solving them.		1. Make sense of problems and persevere in solving them.	2. Construct viable arguments and critique the reasoning of others.
MP Learning Targets					
CCSS Standard	3. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	3. Use place value understanding to round multidigit whole numbers to any place	2. Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, $=$, or <, and justify the conclusions, e.g., by using a visual fraction model.	3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.	3. Recognize a line of symmetry for a twodimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry
Learning Target		I can make appropriate estimations and calculations fluently with whole numbers using mental math strategies			
Mathematical	4. model with	7. Look for and make		1. Make sense of	

Math 4 Quarter 3

Practices	mathematics	use of structure		problems and persevere in solving them.	
$\begin{gathered} \hline \text { MP Learning } \\ \text { Targets } \\ \hline \end{gathered}$					
CCSS Cluster Statement	Gain familiarity with factors and multiples.	Use place value understanding and properties of operations to perform multi-digit arithmetic.	Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.	Represent and interpret data.	
CCSS Standard	4. Find all factor pairs for a whole number in the range 1100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.	4. Fluently add and subtract multi-digit whole numbers using the standard algorithm.	3. Understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$. a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+$ 1/8; $\begin{aligned} & 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1 \\ & +1 / 8=8 / 8+8 / 8+1 / 8 \end{aligned}$ c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction. d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and	4. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.	

Math 4 Quarter 3

			equations to represent the problem.		
Learning Target					
Mathematical Practices	7. look for and make use of structure		6. attend to precision	2. reason abstractly and quantitatively.	
MP Learning Targets					
CCSS Standard		5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two twodigit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models	4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. a. Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent $5 / 4$ as the product 5 x (1/4), recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$. b. Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as 6/5. (In general, $n \times(a / b)=$ ($n \times a$ a) $/ b$.) c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what		

Math 4 Quarter 3

			two whole numbers does your answer lie?		
Learning Target					
Mathematical Practices			7. look for and make use of structure		
MP Learning Targets					
CCSS Standard		6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.			
Learning Target					
Mathematical Practices		1. make sense of problems and persevere in solving them.			
MP Learning Targets					
CCSS Cluster Statement	Generate and analyze patterns.		Understand decimal notation for fractions, and compare decimal fractions.	Geometric measurement: understand concepts of angle and measure angles.	
CCSS Standard	5. Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to		5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100.4 For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100$ $=34 / 100$.	5. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement: a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays	

Math 4 Quarter 3

Learning Target					
Mathematical Practices				1. make sense of problems and persevere in solving them.	
MP Learning Targets					

